Diastereoselective Synthesis of Syn, syn- and Syn, anti-2,4-Diamino-3-hydroxyglutaric Acid Derivatives from Ethyl α -Acyl Alaninates Carlos Alvarez-Ibarra,* Aurelio G. Csáky, Elena Martínez-Santos, Maria L. Quiroga and José L. Tejedor. Departamento de Química Orgánica. Facultad de Ciencias Químicas. Universidad Complutense. Ciudad Universitaria. 28040 Madrid. SPAIN. Received 23 October 1998; revised 21 December 1998; accepted 14 January 1999 Abstract. Syn,syn- and syn,amti-isomers of the four possible diastereomers of O,N,N'-protected 2,4-diamino-3-hydroxyglutaric acid derivatives 3-7 were diastereoselectively obtained. Syn,syn isomers of oxazolines 3 were selectively achieved by an aldol-like reaction in protic conditions between α -metallated ethyl isocyanoacetate 1 and α -acyl alaninates 2. Derivatives 4 with a syn,anti-configuration were obtained under epimerization reaction conditions, whereas derivatives 5-7 with a syn,syn-configuration were selectively obtained under kinetic reaction conditions. © 1999 Elsevier Science Ltd. All rights reserved. Non proteinogenic β -hydroxy α -amino acids (serine analogues) appear in several biologically important naturally occurring peptides such as lysobactin, lactacystin, telomycin and aureobasidin. It has been suggested that a hydroxyl group placed on the backbone of an amino acid plays an active role in binding to a receptor protein or a bio-membrane. When such amino acids are incorporated into peptides, the hydroxyl group plays an essential role in constraining the peptide structure into a specific conformation required for receptor interaction, through inter or intramolecular hydrogen bonding. $^{5.6}$ Other structural characteristics introducing conformational constraint into peptides are the presence of side chains, mainly a methyl group in the α - or β -positions,^{4a} and the N-methyl substitution in some of the amine groups of the amino acid component.^{4b} These features improve the resistance of peptides to proteases and increase their ability to form trans-membrane helical ion channels^{5c}. In light of these considerations, the development of new methods for the preparation of β -hydroxy- α -methyl- α -amino acid derivatives is a challenge in organic synthesis. A good strategy could be based on the nucleophilic addition of organometallic reagents to N-protected α -acyl alaninates. In analogous substrates, as N-protected α -amino aldehydes, the facial selectivity of such reactions has been shown to be dependent on the metal and the nature of the protecting group. Thus, for C-nucleophilic reagents, syn-selectivity became dominant via chelation control tuned by the bulk of the protecting groups, whereas anti-selectivity was improved by the use of large N-protecting groups, such as N, N-dibenzyl, due to a steric inhibition to the chelation. Even though alkylidene or bis(methylthio)methylene⁸ N-protecting groups have been shown to be powerful tools in α-amino acid synthesis,⁹ their use has not been frequent because of their ability to enhance epimerization PII: \$0040-4020(99)00065-4 of the α -methylenic hydrogen in the amino acid backbone. However, this problem is intrinsically precluded in α -quaternized¹⁰ amino acid derivatives and so, the imino derivative protecting groups can be selected to achieve facial selectivity based on metal chelation by the trigonal nitrogen atom (syn-facial selectivity)¹¹ in the syn-diastereoselective synthesis of glutaric acid derivatives. We have recently reported that the aldol-like reaction of α-metallated ethyl isocyanoacetate 1 with α-acyl alaninates 2 under protic conditions (MOR/ROH; M: Li, Na, K, Tl; R: Me, Et, 'Bu) led to a mixture of two diastereomeric oxazolines 3-I/3-II with good diastereomeric excesses (Scheme 1). In this paper, a tentative mechanism to justify the observed full facial diastereoselectivity and the high simple diastereoselectivity in favour of isomers 3-I (syn,syn) is proposed. Furthermore, two different sets of glutaric acid derivatives have been diastereoselectively obtained from oxazolines 3. Derivatives 4a-c with a syn,anti configuration have been obtained under epimerization conditions, whereas derivatives 5, 6 and 7 have been selectively obtained under kinetic control conditions (Scheme 1). #### **RESULTS AND DISCUSSION** # 1. Diasteroselective Synthesis of Oxazolines 3 Compound 2a (Scheme 1, R¹=Me) was selected as the electrophilic partner of the aldol-like reaction using a wide variation in the nature of the base/solvent system.¹⁴ In all the cases studied, only two of the four possible diastereomers of oxazolines 3 were obtained¹⁵ which were epimeric at the oxazoline carbon C-4. Besides, when a mixture of 3a-I/3a-II (66/34) was treated with NaOMe in CD₃OD at 25°C for 0.5 h at the same concentration as that of the reaction conditions, no deuterium incorporation was observed by ¹H NMR analysis of the crude reaction mixture. Therefore, a kinetic control in the formation of both oxazolines 3-I and 3-II can be proposed to explain the observed diastereoselectivity. ¹² In order to explain the general predominance of the isomer 3-I over its epimer 3-II, two transition states, ¹⁶ TS* A and TS* B (Figure 1), starting from a Z-chelated ¹⁷ enolate can be considered. Figure 1. Si, si and si, re approaches for the aldol-like reaction of enolates 1 and α -acyl alaninates 2. TS* A is reasonably more stable than TS* B because the counter-ion in the former is able to promote a better template effect, and thus, a si,si-approach is favoured over a si,re-approach. In support of this hypothesis, the best diastereoselectivity was found for the softest cation (K*>Na*>>Li*; 3a-I/3a-II: 84/16, 80/20, 66/34) which is the most coordinative one. On the other hand, and as a consequence of the steric crowding present in TS* A, the solvent bulk could have a large influence on its stability, and so, for a given cation, the diastereoselectivity will decrease with the solvent molecular size (MeOH<EtOH<BuOH). This is in agreement with previously reported data (MeOH<EtOH<BuOH; 3a-I/3a-II: 84/16, 84/16, 59/41 for K*). 12 On the other hand, the observed increase of the retro-Claisen reaction by the heteronucleophilic attack of the alkoxide on the carbonyl group of the acyl alaninate 2 when 'BuOH or Li⁺ were used in the reaction can also be justified. Thus, when the bulkiest solvent ('BuOH) and/or the less coordinative counter-ion (Li⁺) were used, the energies of both transition states are increased, and therefore, the competitive retro-Claisen reaction becomes significant. #### 2. Hydrolysis and Ring-Opening Isomerization of Oxazolines 3a-c Oxazolines 3-I and 3-II were stable compounds when isolated. However, when these compounds were left standing in wet CHCl₃, they suffered an hydrolysis and a concomitant ring-opening isomerization to glutaric acid derivatives 4, which showed a progressive epimerization to the most stable isomer 4-II¹⁸ (Scheme 2). In addition, when a mixture of oxazolines 3a-I/3a-II (84/16) was treated with AcOH (1.8 M) in EtOH (20°C, 1.5 h) using Schöllkopf's procedure, ¹⁹ glutaric derivative 4a (Scheme 2, R¹=Me) was isolated as a mixture of 4a-I/4a-II (70/30). The epimer 4a-I was purified by crystallization and shown to be stable in the solid state or in freshly prepared solutions (EtOAc/hexane). The filtrate, which was enriched in the isomer 4a-II (4a-I/4a-II: 20/80), epimerized completely to isomer 4a-II (20°C, 3 days). ¹⁸ Under the same reaction conditions, the oxazoline mixtures 3b-I/3b-II (90/10) and 3c-I/3c-II (88/12) gave the glutaric derivatives 4b-II (Scheme 2, R¹=Ph; 30%) and 4c-II (Scheme 2, R¹=2-furyl, 63%), respectively, as single isomers. The observed low yield for 4b-II was due to an extensive fragmentation of 3b-I/3b-II to ethyl N-[bis(methylthio)methylene]alaninate (55%) and ethyl α-benzoylglycinate (55%). Attempted chromatographic purification of 4b-II (silica gel: EtOAc/hexane: 50/50) promoted a complete epimerization and concomitant cyclization to pyroglutamate 8b-I which was unequivocally characterized by its spectroscopic and X-Ray data (Figure 2) (Scheme 3). Scheme 3 Figure 2. ORTEP projections of X-Ray structures of compounds 3c-I and 8b-I. ## 3. N-Methylation and Reduction of Oxazolines 3 and 6 Mixtures of epimeric oxazolines 3-I/3-II (Scheme 1) were submitted to Meyers N-methylation-reduction procedure²⁰ (MeOTf-NaBH₄). Oxazolidines 5 were isolated as diastereomeric mixtures 5-I/5-II in identical ratio to that of the starting oxazolines 3. Acid hydrolysis (oxalic acid, 5 equiv., THF/H₂O: 4/1, 20°C, 48 h) of oxazolidines 5 gave rise to 2-methylthiooxazolines 6 (with the same epimeric ratio) via a ring-opening of oxazolidine 5 followed by an intramolecular nucleophilic attack of the hydroxyl group of the open-chain intermediate on the iminodithiocarbonate moiety. N-methylation-reduction of mixtures of epimeric 2-methylthiooxazolines 6-I/6-II (Scheme 1) gave rise to oxazolidines 7 which were isolated as epimeric mixtures of 7-I/7-II in identical ratios to those of the starting oxazolines 6. From these experimental results, it can be stated that N-methylation-reduction of 3 to 5 and the oxazolines 6 to oxazolidines 7, as well as the acid hydrolysis of oxazolidines 5 to oxazolines 6, occurs with retention of configuration. # 4. Configurational Assignment Oxazolines 3a-c. The relative configurations of the stereogenic centres of oxazolines 3 were established on the basis of ¹H NMR 1D NOE experiments and the X ray structure of compound 3c-I. Oxazolines 3-I and 3-II were epimers at the CH carbon (vide supra). The syn¹¹ relative configuration of the quaternary carbon of the all epimeric compounds was unequivocally established as 1'R*,4S* and the configurational assignment was deduced as 1'R*,4S*,5S* from the X-Ray data for compound 3c-I (Figure 2). The NOE effects observed for oxazolines
3c-I and 3c-II are gathered in Figure 3. Upon irradiation of the hydrogen H-4 (s, 5.40 ppm) of isomer 3c-I, a 5.9% of NOE enhancement was observed on the CH₃-C1' (s, 1.64 ppm) signal. However, no NOE effect was observed between the hydrogen H-4 (s, 5.57 ppm) of isomer 3c-II and the CH₃-C1' (s, 1.48 ppm) signal. These results are in agreement with the X Ray structure for 3c-I and a configurational assignment of oxazolines 3-I as (1'R*,4R*,5S*) and derivatives 3-II as (1'R*,4S*,5S*) isomers can be unequivocally proposed. The assignment of the other oxazolines 3a and 3b was based on a comparison of the 1D NOE data of both epimers 3-I and 3-II²¹ with those of 3c-I and 3c-II. Figure 3. Observed NOE effects for oxazolines 3c-I and 3c-II Glutaric acid derivatives 4. The configurational assignment of the quaternary carbon of glutaric acid derivatives 4 was derived as syn^{11} for both isomers 4-I and 4-II from the relative configurations previously established for oxazolines 3. The relative configuration of the carbon CH was tentatively established on the basis of the stabilities observed for derivatives 4, the observed NOE effects for derivatives 4a-I and 4a-II and the calculated distances from conformational analysis of the two possible syn,syn^{11} and $syn,anti^{11}$ epimers of derivatives 4-I and 4-II. The conformational analysis of syn,syn and syn,anti epimers of derivatives 4 was carried out with the MMX molecular mechanic force field²² integrated in the PC MODEL package software.²³ Structures with torsion angles close to those of minimum energy were used as initial trial conformers and they were minimized by the Newton-Raphson block-diagonal method²⁸ up to a gradient root mean square less than 0.1 kcal/Å. The search of the significant populated conformers was carried out from the previous structures by a molecular dynamic simulation during 50 ps at 600 K after a heating period time of 5 ps from 0 K. The constant temperature of 600 K was kept during all the simulation by coupling to an external bath with a relaxation constant of 0.5 ps. Structures were saved each 1 ps and independent minimised with the MMX force field.²² All conformers were selected from the conformational global minimum and 3 kcal/mol above it. The conformational analysis of the two epimers of 4a put forward an average distance between H-4 and Me-C-2 of 2.90 Å in the *syn,syn* isomer and 2.98 Å in the *syn,anti* epimer. These results are in qualitative agreement with the observed NOE effects on the Me-C-2 group which was higher for the *syn,syn* isomer. Upon irradiation of the hydrogen H-4 of isomer 4a-I (s, 4.92 ppm) and isomer 4a-II (s, 4.78 ppm), a 8.0% and 7.0% of NOE enhancements were respectively observed on the CH₃-C2' signals (isomer 4a-I: s, 1.59 ppm; isomer 4a-II: s, 1.56 ppm). On the other hand, the formation of a single epimer for derivatives 4b and 4c precludes the application of the above criteria to these compounds. However, the calculation of the equilibrium constants for the inter conversion between each pair of epimers from the conformational analysis results could tentatively support the configurational assignment. Equilibria constants were calculated²⁹ taking into account the results of the previous conformational analysis. The results are given in the Table 1. | Compound | Isomer | G ^o isomer | K• | |----------|----------|-----------------------|------| | | syn,syn | 24.4 | | | 4a | syn,anti | 22.5 | 25.0 | | | syn,syn | 32.7 | | | 4b
4c | syn,anti | 31.6 | 6.4 | | | syn,syn | 31.6 | | | | syn,anti | 31.0 | 2.8 | Table 1. Free Energies, Go keal/mol), for the syn, syn and syn, anti isomers of compounds 4a-c. The data shown in the Table 1 indicate that syn, anti epimers are more stable than syn, syn isomers for all the glutaric acid derivatives 4a-c. These results, together with the isomerization experimentally observed, allow the tentative assignments of epimers 4-I as syn, syn isomers and 4-II as syn, anti stereoisomers. Derivatives 5, 6 and 7. The configurational assignment of compounds 5-7 can be established from the observed stereochemical results in their chemical transformation reactions. As the initial epimeric ratios are unchanged in all subsequent chemical transformations of these compounds, their relative configurations correlate directly with the previously established assignments of oxazolines 3-I and 3-II. Thus, a syn, syn configuration can be assigned to all isomers I and the syn, anti configuration to all isomers II #### **CONCLUSIONS** The aldol like reaction between ethyl isocyanoacetate 1 and the α-acyl alaninates 2 in protic medium enables the preparation of oxazolines 3 with full facial diastereoselectivity and a high simple diastereoselectivity in favor of isomers 3-I (syn,syn). Two different sets of glutaric acid derivatives can be obtained from oxazolines ^{*}Calculated epimerization constants at 298°K for syn, syn and syn, anti isomerization. 3: compounds 4a-c with a syn, anti configuration were selectively obtained under thermodynamical control, whereas derivatives 5, 6 and 7 were prepared as syn, syn isomers under kinetic control. #### **EXPERIMENTAL SECTION** Solvents were reagent grade and used without purification and distilled before use: CH₂Cl₂ from CaH₂, Et₂O and THF from sodium benzophenone ketyl. TLC was performed on plates of silica gel precoated with 0.20 mm Kieselgel 60 F₂₅₄. Flash columns were packed with 230-240 mesh silica gel. Melting points were measured in open capillary tubes and are uncorrected. NMR spectra were obtained at 300 MHz (¹H) and 75.5 MHz (¹³C) and the chemical shifts are reported as δ values relative to TMS. X-Ray data was collected at 213 K. Syntheses of 2-acyl-N-[bis(methylthio)methylene]alanine (ethyl ester) (4a-c) from ethyl N-[bis(methylthio)methylene]alaninate³⁰ were carried out as previously reported.³¹ Diastereoselective Syntheses of Oxazolines 3. General Procedure. To a suspension of metallic alkoxide (1 mmol) in the anhydrous alcohol (1 mL) was added under an atmosphere of dry argon, a prepared solution of ethyl isocyanoacetate 1 (0.113 g, 1 mmol) and alaninate 2a-c (1 mmol) in anhydrous alcohol (1 mL). The reaction mixture was stirred for 15 min and then was diluted with water (1.5 mL). Stirring was continued for 10 min and then the mixture was extracted with CHCl₃ (3x5 mL). The combined organic extracts were washed with brine, dried on MgSO₄ and concentrated under reduced pressure. (1'R*,4S*,5S*)-5-{1'-[Bis(methylthio)metylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-methyl-4,5-dihydrooxazole, 3a-I and (1'R*,4R*,5S*)-5-{1'-[Bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-methyl-4,5-dihydrooxazole, 3a-II. According to the general procedure, starting from 2a (1g, 3.8 mmol), KOEt/EtOH at 0°C. After a flash chromatography (EtOAc/hexanes: 1/1) a colorless oil (1.22 g) was obtained and identified as a mixture of diastereomers I/II (84/16) of 3a (yield: 85%) and ethyl N-[bis(methylthio)methylene]alaninate (0.080 g) which was identified by comparison of its spectral data with those of an authentic sample.³⁰ Analytical sample of diastereomeric racemate 3a-I as a colorless oil was obtained by a flash chromatography (EtOAc/hexanes: 25/75) from the isomer mixture. IR (film): 3080, 1730, 1640, 1590 cm⁻¹. ¹H NMR (CDCl₃) & 1.29 (t, 3H, J=7.2 Hz), 1.30 (t, 3H, J=7.2 Hz), 1.41 (s, 3H), 1.59 (s, 3H), 2.35 (s, 3H), 2.55 (s, 3H), 4.16 (qd, 1H, J=7.2, 3.9 Hz), 4.23 (qd, 1H, J=7.2, 3.9 Hz), 4.25 (q, 2H, J=7.2 Hz), 5.12 (d, 1H, J=2.1 Hz), 6.93 (d, 1H, J=2.1 Hz). ¹³C NMR (CDCl₃) & 13.9, 14.0, 15.2, 16.3, 17.5, 17.6, 61.1, 61.6, 71.4, 72.5, 90.7, 155.8, 161.6, 170.1, 170.7. Analysis Calcd. for C₁₅H₂₄N₂O₂S₂: C, 47.86; H, 6.43; N, 7.45. Found: C, 47.92; H, 6.37; N, 7.65. The minor isomer 3a-II could be identified by its spectral data in the reaction mixture. ¹H NMR (CDCl₃) & 1.28 (t, 3H, J=7.2 Hz), 1.31 (t, 3H, J=7.2 Hz), 1.36 (s, 3H), 1.59 (s, 3H), 2.30 (s, 3H), 2.55 (s, 3H), 4.10-4.29 (m, 4H), 5.19 (d, 1H, J=2.1 Hz), 6.95 (d, 1H, J=2.1 Hz). ¹³C NMR (CDCl₃) δ 13.7, 14.1, 15.3, 16.5, 17.5, 28.9, 61.0, 61.7, 71.4, 71.9, 90.7, 155.5, 161.6, 170.2, 170.7. (1'R*,4S*,5S*)-5-{1'-[Bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-phenyl-4,5-dihydrooxazole, 3b-I, and (1'R*,4R*,5S*)--5-{1'-[Bis(methylthio)methylene]-amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-phenyl-4,5-dihydrooxazole, 3b-II. According to the general procedure, starting from 2b (1.000 g, 3.07 mmol), KOEt/EtOH at 25°C. After flash chromatography (EtOAc/hexanes: 40/60) two fractions were obtained. The first one (0.071 g) was a mixture of the compound 8 (80%) and ethyl benzoate (20%), and the second fraction (1.156 g) was identified as a mixture of isomers 3b-I and 3b-II (90/10). Pure **3b-I** was obtained as a crystalline white solid by recrystallization (n-hexane). MP 68-69°C. IR (KBr) 3090, 1745, 1725, 1640, 1560 cm⁻¹. ¹H NMR (CDCl₃) δ 0.84 (t, 3H, J=7.2 Hz), 1.27 (t, 3H, J=7.2 Hz), 1.28 (s, 3H), 2.56 (s, 3H), 2.70 (s, 3H), 3.64 (qd, 1H, J=7.2, 10.8 Hz), 3.88 (qd, 1H, J=7.2, 10.8 Hz), 4.11 (qd, 1H, J=7.2, 10.8 Hz), 4.16 (qd, 1H, J=7.2, 10.8 Hz), 5.67 (d, 1H, J=2.1 Hz), 7.04 (d, 1H, J=2.1 Hz), 7.27 (m, 3H), 7.26-7.69 (m, 2H). ¹³C NMR (CDCl₃) δ 13.4, 13.8, 15.5, 16.5, 20.0, 60.7, 61.7, 72.4, 74.9, 93.7, 126.6, 127.2, 127.8, 137.3, 154.7, 162.6, 169.2, 170.7. Anal. Calcd. for C₂₀H₂₆N₂O₅S₂: C, 54.78; H, 5.948 N, 6.39. Found: C, 54.61; H, 5.87; N, 6.43. The minor isomer **3b-II** could be identified by its spectral data in the reaction mixture. ¹H NMR (CDCl₃) δ 0.85 (t, 3H, J=7.2 Hz), 1.06 (t, 3H, J=7.2 Hz), 1.41 (s, 3H), 2.46 (s, 3H), 2.54 (s, 3H), 3.72 (q, 2H, J=7.2 Hz), 4.05 (q, 2H, J=7.2 Hz), 5.66 (d, 1H; J=2.1 Hz), 7.18 (d, 1H, J=2.1 Hz), 7.25-7.28 (m, 3H), 7.66-7.68 (m, 2H). ¹³C NMR (CDCl₃) δ 13.6, 13.8, 15.5, 16.4, 19.6, 60.7, 61.7, 72.4, 74.8, 93.6, 126.2, 127.3, 127.8, 137.3, 154.8, 162.6, 169.2, 170.6.
(1'R*,4S*,5S*)-5-{1'-[Bis(methylthio)methylene]amino-1'methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-(2'-furyl)-4,5-dihydrooxazole, 3c-I, and (1'R*,4R*,5S*)-5-{1'[Bis(methylthio)methylene]-amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-5-(2'-furyl)-4,5-dihydrooxazole, 3c-II. According to the general procedure, starting from 2c (0.968 g, 3.07 mmol), KOEt/EtOH at 20°C. After flash chromatography (EtOAc/hexanes: 40/60) two fractions were obtained. The first one (0.200 g) was identified by its analytical data as a mixture of the compound 8 (82%) and ethyl furoate (18%). The second fraction (0.959 g, 2.24 mmol, yield: 73%) was a mixture of the isomers 3c-I and 3c-II (88/12). The derivative 3c-I was isolated as a white solid by recrystallization (ethyl acetate/hexane), M.P.: 70-72°C, and characterized by X-Ray³², IR and NMR. The ORTEP drawing is outlined in the Figure 2. IR (KBr) 3140, 1740, 1645, 1585 cm⁻¹. ¹H NMR (CDCl₃) δ 1.12 (t, 3H, J=7.2 Hz), 1.17 (7, 3H, J=7.2 Hz), 1.64 (s, 3H), 2.45 (s, 3H), 2.55 (s, 3H), 3.95 (qd, 1H, J=7.2, 8.7 Hz), 4.00 (qd, 1H, J=7.2, 8.7 Hz), 4.03 (qd, 1H, J=7.2, 11.0 Hz), 4.09 (qd, 1H, J=7.2, 11.0 Hz), 5.40 (d, 1H, J=1.8 Hz), 6.33 (dd, 1H, J=3.3, 2.0 Hz), 6.41 (dd, 1H, J=3.3, 0.9 Hz), 7.05 (d, 1H, J=1.8 Hz), 7.36 (dd, 1H, J=2, 0.9 Hz). ¹³C NMR (CDCl₃) δ 13.7, 13.7, 15.3, 16.3, 17.8, 61.3, 61.5, 72.0, 73.9, 91.1, 109.6, 110.3, 142.3, 149.5, 155.1, 161.9, 169.1, 169.8. Analysis Calcd. for C₁₈H₂₄N₂O₆S₂: C, 50.45; H, 5.65; N, 6.54. Found: C, 50.21; H, 5,70; N, 6.48. The minor isomer 3c-II was identified from the reaction mixture by its spectral data. ¹H NMR (CDCl₃) & 1.10 (t, 3H, J=7.2 Hz), 1.31 (t, 3H, J=7.2 Hz), 1.48 (s, 3H), 2.32 (s, 3H), 2.55 (s, 3H), 3.90-4.30 (m, 4H), 5.57 (d, 1H, J=1.8 Hz), 6.33 (dd, 1H, J=3.3, 2.0 Hz), 6.43 (dd, 1H, J=3.3, 0.9 Hz), 7.07 (d, 1H, J=1.8 Hz), 7.28 (dd, 1H, J=2.0, 0.9 Hz). ## Hydrolysis of Oxazolines 3a, 3b and 3c. General Procedure Oxazolines 3a-c were hydrolyzed with AcOH/EtOH at different temperatures and reaction times to yield the glutaric acid derivatives 4. Glutaric derivatives 4a-I/4a-II and 4c-II (as a single isomer) were obtained from 3a-I/3a-II and 3c-I/3c-II mixtures, respectively, by reaction at 20°C for 1.5 h. Glutaric acid derivative 4b-II (as a single isomer) was obtained from 3b-I/3b-II mixture at 20°C for 3.5.h. To a solution of oxazoline **3a-c** (2.66 mmol, 2.28 mmol, 2.33 mmol, respectively) (as an epimeric mixture) in EtOH (8.3 mL) was added AcOH (2 mL, 1.8 M) and the reaction mixture was stirred at rt or 50°C for 1.5 h or 3h. Then, it was concentrated under vacuum and the crude product was dissolved in CHCl₃ (5 mL) and H₂O (3 mL). The solution was extracted with CHCl₃ (3x10 mL), washed with H₂O to pH 7 and dried over MgSO₄. The solvent was removed under vacuum and the residue analyzed by TLC and ¹H NMR spectroscopy. Diethyl (2R*,3S*,4S*)-2-[bis(methylthio)methylene]amino-4-formylamino-3-hydroxy-2,3-dimethylglutarate, 4a-I, and diethyl (2R*,3S*,4R*)-2-[bis(methylthio)methylene]amino-4-formylamino-3-hydroxy-2,3-dimethylglutarate, 4a-II. According to the general procedure, from a mixture of 3a-I/3a-II (84/16) (1 g, 2.66 mmol) were obtained 0.566 g (1.49 mmol, yield 56%) of the title diasteromeric racemates 4a-I/4a-II (70/30). The major isomer was isolated (0.150 g) by recrystallization (EtAcO/n-hexane) and the minor isomer 4a-II (0.200 g) was obtained by precipitation of the filtrate at rt for 3 days. Both compounds showed spectral data in agreement with the title structures. 4a-I. Crystalline white solid. MP (EtOAc/n-hexane) 111-112°C. IR (KBr) 3400, 1730, 1680, 1580 cm⁻¹. ¹H NMR (CDCl₃) δ 1.28 (t, 3H, J=7.2 Hz), 1.29 (t, 3H, J=7.2 Hz), 1.33 (s, 3H), 1.59 (s, 3H), 2.42 (s, 3H), 2.57 (s, 3H), 4.06 (s, 1H), 4-00-4.20 (m, 4H), 4.92 (d, 1H, J=7.8 Hz), 7.12 (d, 1H, J=7.8 Hz), 8.18 (s, 1H), ¹³C NMR (CDCl₃) δ 13.9, 14.0, 15.6, 16.7, 17.8, 21.8, 55.8, 61.4, 61.8, 72.6, 76.5, 160.4, 163.8, 170.8, 171.9. Anal. Calcd. for C₁₅H₂₆N₂O₆S₂: C, 45.67; H, 6.65; N, 7.11. Found: C, 45.73; H, 6.81; N, 7.18. 4a-II. Crystalline white solid. MP (EtOAc/hexane) 109-110°C. IR (KBr) 3400, 1730, 1680, 1580 cm⁻¹. ¹H NMR (CDCl₃) δ 1.29 (t, 6H, J=7.2 Hz), 1.37 (s, 3H), 1.56 (s, 3H), 2.41 (s, 3H), 2.57 (s, 3H), 3.97-4.23 (m, 4H), 4.78 (d, 1H, J=7.8 Hz), 6.91 (d, 1H, J=7.8 Hz), 8.15 (s, 1H). ¹³C NMR (CDCl₃) δ 13.8, 14.0, 15.5, 16.6, 17.8, 21.7, 55.8, 61.3, 61.7, 72.6, 76.6, 160.3, 163.8, 170.7, 171.9. Anal. Calcd. for C₁₅H₂₆N₂O₆S₂: C, 45.67; H, 6.65; N, 7.11. Found: C, 45.82; H, 6.71; N, 7.02. Diethyl (2R*,3S*,4R*)-2-[bis(methylthio)methylene]amino-4-formylamino-3-hydroxy-2-methyl-3-phenylglutarate, 4b-II. According to the general procedure, from 3b-I/3b-II (90/10) (1 g, 2.28 mmol) at rt for 3.5 h was obtained a crude product (0.840 g) which shown three spots by TLC. The three components of the mixture were identified by ¹H NMR as a single racemic diastereomer of the glutarate derivative 4b-II (26%), tert-butyl acetate (74%) and ethyl N-[bis(methylthio)methylene]alaninate 10 (74%). Flash chromatography of the reaction mixture (EtOAc/hexanes: 50/50) allowed for the separation of four fractions which were identified as the derivative 10 (0.267 g), as a new compound originated into the column which was identified as (2R*,3R*,4S*) ethyl N-formyl-4-[bis(methylthio)methylene]amino-3-hydroxy-3-phenyl-pyroglutamate 8b-I by its spectral data and X-Ray diffraction analysis³⁵, as tert-butyl acetate (0.294 g) and one single racemate 4b-II (0.226 g) of the title compound. All attempts to recrystallize the racemate 4b-II occurred with disproportionation to compounds 10 and 11. **4b-II**. White solid. MP 96-97°C. IR (KBr) 3300, 1725, 1670, 1585 cm⁻¹. ¹H NMR (CDCl₃) δ 0.70 (t, 3H, J=7.2 Hz), 1.08 (t, 3H, J=7.2 Hz), 1.51 (s, 3H), 2.56 (s, 3H), 2.565 (s, 3H), 3.73 (qd, 1H, J=7.2, 10.8 Hz), 3.78 (qd, 1H, J=7.2, 10.8 Hz), 3.91 (qd, 1H, J=7.2, 10.8 Hz), 4.83 (s, 1H), 5.45 (d, 1H, J=6.6 Hz), 7.27-7.29 (m, 3H), 7.60-7.66 (m, 2H), 7.96 (d, 1H, J=6.6 Hz), 8.21 (s, 1H). ¹³C NMR (CDCl₃) δ 13.1, 13.4, 15.7, 16.7, 19.3, 57.1, 60.9, 61.6, 73.7, 80.2, 127.2, 127.3, 127.9, 139.0, 160.6, 163.7, 170.4, 172.0. Anal. Calcd. for $C_{20}H_{28}N_2O_6S_2$: C, 52.61; H, 6.18; N, 6.14. Found: C, 52.77; H, 6.09; N, 6.21. 8b-I. White solid, MP 137-138°C. ORTEP drawing was obtained by X Ray diffraction analysis (Figure 3). IR (KBr) 3450, 1770, 1745, 1700, 1570 cm⁻¹. ¹H NMR (CDCl₃) δ 1.17 (t, 3H, J=7.2 Hz), 1.63 (s, 3H), 2.18 (s, 3H), 2.50 (s, 3H), 4.17 (qd, 1H, J=7.2, 10.8 Hz), 4.23 (qd, 1H, J=7.2, 10.8 Hz), 4.29 (s, 1H), 5.525 (s, 1H), 7.35-7.39 (m, 3H), 7.63-7.66 (m, 2H), 9.15 (s, 1H). ¹³C NMR (CDCl₃) δ 10.7, 13.6, 15.9, 16.2, 58.7, 62.4, 74.3, 81.1, 127.4, 127.7, 128.5, 135.8, 160.1, 164.8, 168.7, 172.5. Analysis Calcd. for C₂₀H₂₈N₂O₆S₂: C, 52.62; H, 6.18; N, 6.14. Found: C, 52.81; H, 6.19; N, 6.11. Diethyl (2R*,3S*,4R*)-2-[bis(methylthio)methylene]amino-4-formylamino-3-(2'-furyl)-3-hydroxy-2-methylglutarate, 4c-II. According to the general procedure from 3c-I/3c-II (88/12) (1g, 2.33 mmol) the title compound was obtained as a single isomer (0.655 g) and purified by recrystallization giving a crystalline white solid. MP 113-114 °C (EtOAc/n-hexane). Yield: 63%. IR (KBr) 3380, 1750, 1730, 1675, 1555 cm⁻¹. ¹H NMR (CDCl₃) δ 0.96 (t, 3H, J=7.2 Hz), 1.08 (t, 3H, J=7.2 Hz), 1.78 (s, 3H), 2.51 (s, 3H), 2.56 (s, 3H), 3.75-3.96 (m, 4H), 4.48 (s, 1H), 5.24 (d, 1H, J=6.6 Hz), 6.30 (dd, 1H, J=3.3, 1.8 Hz), 6.33 (dd, 1H, J=3.3, 0.9 Hz), 7.45 (dd, 1H, J=1.8, 0.9 Hz), 7.83 (d, 1H, J=6.6 Hz), 8.22 (s, 1H). ¹³C NMR (CDCl₃) δ 13.4, 15.5, 16.5, 17.2, 56.2, 61.0, 61.5, 74.0, 79.5, 108.8, 110.0, 142.4, 152.8, 160.2, 164.8, 168.7, 170.8. Analysis Calcd. for C₁₈H₂₆N₂O₇S₂: C, 48.42; H, 5.87; N, 6.28. Found: C, 48.53; H, 5.86; N, 6.13. ## Synthesis of Oxazolidines 5a-c. General Procedure Oxazolidines 5a-c were obtained from oxazolines 3a-c by N-methylation and reduction following the procedure described by Meyers.²⁰ To a solution of oxazoline 3a-c (5.32 mmol) as epimeric mixture in 66 mL of CH₂Cl₂ under atmosphere of dry argon, were added MeOTf (1.74 g, 10.64 mmol) and the reaction mixture was stirred at rt over 2 h. Then, the reaction was cooled to 0°C and a solution of NaBH₄ (0.402 g, 10.64 mmol) in dry THF (29 mL) and MeOH (6 mL) was added. The temperature was maintained at 0°C for 30 min and then was allowed to warm to 25°C and H₂O (10 mL) added. The reaction mixture was extracted with CHCl₃ (3x25 mL) and the combined organic extracts were dried on MgSO₄, the solvent was eliminated under reduced pressure and the crude product was analyzed by TLC and fractionated by flash chromatography. (1'R*,4S*,5S*)-5-{1'-[Bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxyc arbonyl-3,5-dimethyloxazolidine, 5a-I and (1'R*4R*,5S*)--5-{1'-[bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-3,5-dimethyloxazolidine, 5a-II. According to the general procedure, from 3a-I/3a-II (84/16) (2 g, 5.31 mmol) were obtained a reaction mixture containing oxazolidines 5a-I and 5a-II in a ratio 84/16. These compounds were isolated by a flash chromatography (EtOAc/hexanes: 25/75): 5a-I (0.963 g, yield 46%) and 5a-II (0.183 g, yield 9%). **5a-I.** White solid. MP (EtOAc/n-hexane): 46-47°C. IR (KBr) 2820, 2740, 1725, 1740, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ 1.28 (t, 3H, J=7.2 Hz), 1.29 (t, 3H, J=7.2 Hz), 1.36 (s, 3H), 1.58 (s, 3H), 2.38 (s, 3H), 2.40 (s, 3H), 2.54 (s, 3H), 4.10 (s, 1H), 4.11 (qd, 1H, J=7.2, 10.8 Hz), 4.16 (qd, 1H, J=7.2, 10.8 Hz), 4.20 (qd, 1H, J=7.2, 10.8 Hz), 4.25 (qd, 1H, J=7.2, 10.8 Hz), 4.33 (d, 1H, J=0.9 Hz), 4.68 (d, 1H, J=0.9 Hz). ¹³C NMR (CDCl₃) δ 13.8, 13.8, 14.1, 15.4, 16.5, 18.0, 19.0, 34.2, 60.4, 61.0, 68.9, 86.8, 90.0, 159.7, 171.0, 171.6. Analysis Calcd. for $C_{16}H_{28}N_2O_5S_2$: C, 48.96; H, 7.19; N, 7.14. Found: C, 49.06; H, 7.16; N, 7.12. **5a-II.** Colorless oil IR (film) 2820, 2740, 1725, 1740, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ 1.28 (t, 3H, J=7.2 Hz), 1.29 (t,
3H, J=7.2 Hz), 1.35 (s, 3H), 1.64 (s, 3H), 2.40 8s, 3H), 2.43 (s, 3H), 2.55 (s, 3H), 3.97 (s, 1H), 4.11 (qd, 1H, J=7.2, 10.8 Hz), 4.16 (qd, 1H, J=7.2, 10.8 Hz), 4.21 (qd, 1H, J=7.2, 10.8 Hz), 4.71 (qd, 1H, J=7.2, 10.8 Hz), 4.41 (d, 1H, J=1.3 Hz), 4.71 (d, 1H, J=1.3 Hz). ¹³C NMR (CDCl₃) & 13.7, 14.1, 15.9, 16.8, 18.3, 19.6, 36.2, 60.7, 61.2, 69.8, 73.6, 87.4, 89.2, 160.4, 170.8 171.6. Anal. Calcd. for C₁₆H₂₈N₂O₅S₂: C, 48.96; H, 7.19; N, 7.14. Found: C, 49.12; H, 7.14; N, 7.21. (1'R*,4S*,5S*)-{1'-[Bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycar bonyl-3-methyl-5-phenyloxazolidine, 5b-I, and (1'R*,4R*,5S*)-{1'-[bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbonyl-3-methyl-5-phenyloxazolidine, 5b-II. According to the general procedure, from 3b-I/3b-II (90/10) (2.33 g, 5.46 mmol) was obtained a reaction crude (2.02 g) that by TLC (EtOAc/hexanes: 50/50) showed one spot. By ¹H NMR it was identified as a epimeric mixture (90/10) of the titled compounds. The mixture was purified by flash chromatography to give the 5b-I and 5b-II as a colorless oils. Yield: 84%. IR (film) 2820, 2740, 1725, 1580 cm⁻¹. Analysis Calcd. for C₂₁H₃₀N₂O₅S₂: C, 55.48; H, 6.65; N, 6.16. Found: C, 55.39; H, 6.68; N, 6.05. **5b-I**. ¹H NMR (CDCl₃) δ 0.86 (t, 3H, J=7.2 Hz), 1.28 (s, 3H), 1.31 (t, 3H, J=7.2 Hz), 2.35 (s, 3H), 2.51 (s, 3H), 2.60 (s, 3H), 3.72 (q, 2H, J=7.2 Hz), 4.10 (qd, 1H, J=7.2, 10.8 Hz), 4.19 (qd, 1H, J=7.2, 10.8 Hz), 4.54 (s, 1H), 4.70 (s, 2H), 7.20-7.22 (m, 3H), 7.52-7.72 (m, 2H). ¹³C NMR (CDCl₃) δ 13.5, 13.9, 15.6, 16.8, 19.4, 33.6, 59.9, 61.1, 70.3, 72.4, 86.6, 93.2, 126.5, 127.0, 127.8, 139.2, 160.5, 170.5, 171.8. **5b-II**. ¹H NMR (CDCl₃) δ 0.86 (t, 3H, J=7.2 Hz), 1.26 (t, 3H, J=7.2 Hz), 1.28 (s, 3H), 2.43 (s, 3H), 2.49 8s, 3H), 2.55 (s, 3H), 3.70-3.76 (m, 2H), 4.04-4.24 (m, 2H), 4.65 (s, 1H), 4.77 (s, 2H), 7.15-7.22 (m, 3H), 7.51-7.54 (m, 2H). ¹³C NMR (CDCl₃) δ 13.2, 14.0, 15.3, 16.8, 18.8, 34.6, 60.0, 60.6, 66.7, 71.8, 87.7, 92.9, 126.5, 126.6, 126.9, 139.9, 160.4, 170.5, 171.4. (1'R*,4S*,5S*)-5-{1'-[Bis(methylthio)methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxyc arbony-5-(2'-furyl)-3-methyloxazolidine, 5c-I, and (1'R*,4R*,5S*)-5-{1'-[bis(methylthio)-methylene]amino-1'-methyl}ethoxycarbonylmethyl-4-ethoxycarbony-5-(2'-furyl)-3-methyloxazolidine, 5c-II. According to the general procedure, from 3c-I/3c-II (88/12) (2.276 g, 5.27 mmol) were obtained 1.910 g of a crude product as colorless oil which was analyzed by TLC (EtOAc/hexanes: 50/50) showing two spots. By ¹H NMR the crude product was identified as an epimeric mixture (88/12) of the title compounds. By flash chromatography were obtained 1.496 g of the pure 5c-I and 0.204 g of the 5c-II. Yield: 72%. 5c-I. Colorless oil. IR (film) 2800, 2730, 1725, 1580 cm⁻¹. ¹H NMR (CDCl₃) δ 1.09 (t, 3H, J=7.2 Hz), 1.18 (t, 3H, J=7.2 Hz), 1.49 (s, 3H), 2.33 (s, 3H), 2.48 (s, 3H), 2.49 (s, 3H), 3.91 (qd, 1H, J=7.2, 10.5 Hz), 3.96 (qd, 1H, J=7.2, 10.5 Hz), 4.04 (q, 2H, J=7.2 Hz), 4.40 (s, 1H), 4.42 (d, 1H, J=2.1 Hz), 4.79 (d, 1H, J=2.1 Hz), 6.31 (dd, 1H, J=1.5, 3.3 Hz), 6.43 (dd, 1H, J=3.3, 0.9 Hz), 7.31 (dd, 1H, J=1.5, 0.9 Hz). 13 C NMR (CDCl₃) δ 13.7, 13.8, 15.4, 16.5, 18.6, 35.5, 60.5, 61.0, 70.3, 72.6, 87.9, 90.7, 109.4, 110.0, 141.3, 152.3, 159.8, 170.2, 170.8. Anal. Calcd. for $C_{19}H_{30}N_2O_6S_2$: C, 51.10; H, 6.77; N, 6.27. Found: C, 51.38; H, 6.62; N, 6.32. 5c-II. Colorless oil. IR (film) 2800, 2730, 1725, 1580 cm⁻¹. ¹H NMR (CDCl₃) δ 1.14 (t, 3H, J=7.2 Hz), 1.20 (t, 3H, J=7.2 Hz), 1.64 (s, 3H), 2.37 (s, 3H), 2.44 (s, 3H), 2.53 (s, 3H), 3.97 (qd, 1H, J=7.2, 10.8 Hz), 4.02 (qd, 1H, J=7.2, 10.8 Hz), 4.06 (qd, 1H, J=7.2, 10.8 Hz), 4.17 (qd, 1H, J=7.2, 10.8 Hz), 4.32 (s, 1H), 4.50 (d, 1H, J=2.7 Hz), 4.86 (d, 1H, J=2.7 Hz),6.31 (dd, 1H, J=3.3, 1.8 Hz), 6.44 (dd, 1H, J=3.3, 0.6 Hz), 7.25 (dd, 1H, J=1.8, 0.6 Hz). ¹³C NMR (CDCl₃) δ 13.5, 13.7, 15.4, 16.5, 18.0, 35.6, 60.7, 61.1, 71.1, 73.1, 88.2, 90.7, 109.0, 110.1, 141.1, 152.7, 159.9, 170.0, 171.0. Anal. Calcd. for C₁₉H₃₀N₂O₆S₂: C, 51.10; H, 6.77; N, 6.27. Found: C, 50.98; H, 6.82; N, 6.18. #### Hydrolysis of Oxazolidines 5a-c. General Procedure To a mixture of oxazolidine **5a-c** (12.75 mmol) and oxalic acid dihydrate (1.61 g, 12.75 mmol) were added THF (16 mL) and H₂O (4 mL). The reaction mixture was stirred for 48 h at rt. Then, it was extracted with CHCl₃ at acid pH and the extract was discarded. The pH of the aqueous phase was adjusted to 12 with ammonia and it was extracted with CHCl₃ (3x20 mL) and the combined organic extracts were dried over MgSO₄ and concentrated by elimination of the solvent under reduced pressure. The reaction crude was analyzed by TLC and the products were characterized by IR, ¹H and ¹³C NMR. (1'S*,4R*,5S*)-4-Ethoxycarbonyl-5-[1'-methylamino-1'-ethoxycarbonyl]methyl-4,5-dimethyl-2-met hylthio-4,5-dihydrooxazole, 6a-I.. According to the general procedure described above, from 5a-I (1 g, 2.55 mmol) were obtained 0.627 g of a reaction crude which was characterized as a single racemate of the title compound. The pure compound was obtained by recrystallization (EtOAc/n-hexane) of the crude product. Yield: 74%. White solid. MP 51-52°C. IR (KBr) 3430, 1730, 1680, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ 1.29 (t, 3H, J=7.2 Hz), 1.31 (t, 3H, J=7.2 Hz), 1.37 (s, 3H), 1.38 (s, 3H), 2.38 (s, 3H), 2.93 (s, 3H), 3.74 (s, 1H), 4.15 (qd, 1H, J=7.2, 10.8 Hz), 4.18 (qd, 1H, J=7.2, 10.8 Hz), 4.19 (qd, 1H, J=7.2, 10.8 Hz), 4.27 (qd, 1H, J=7.2, 10.8 Hz), 4.42 (s, 1H). ¹³C NMR (CDCl₃) δ 13.8, 14.0, 14.05, 21.7, 23.5, 37.2, 61.2, 61.5, 64.6, 69.2, 71.7, 155.0, 169.1, 175.5. Analysis Calcd. for C₁₄H₂₄N₂O₅S: C, 50.59; H, 7.28; N, 8.43. Found: C, 50.72; H, 7.31; N, 8.28. (1'R*,4S*,5S*)-4-Ethoxycarbonyl-5-[1'methylamino-1'-ethoxycarbonyl] methyl-4-methyl-2-methylt hio-5-phenyl-4,5-dihydrooxazole, 6b-I, and (1'S*,4R*,5SS*)-4-Ethoxycarbonyl-5-[1'-methylamino-1'-ethoxycarbonyl-5- 1'-ethoxycarbonyl]methyl-4-methyl-2-methylthio-5-phenyl-4,5-dihydrooxazole, 6b-II. According to the general procedure described above, from 5b-I/5b-II (90/10) (1.158 g, 2.55 mmol) a colorless oil (0.864 g, yield 86%) was obtained. The analysis of the crude product showed a single spot by TLC (EtOAc/hexanes: 50/50). The mixture was purified by flash chromatography to give a mixture (90/10) of the epimeric racemates 6b-I/6b-II. IR (film) 3450, 1750, 1600 cm⁻¹. Anal. Calcd. for C₁₉H₂₆N₂O₅S: C, 57.85; H, 6.64; N, 7.10. Found: C, 57.72; H, 6.71; N, 7.24. **6b-I**. ¹H NMR (CDCl₃) δ 0.92 (t, 3H, J=7.2 Hz), 1.05 (t, 3H, J=7.2 Hz), 1.32 (s, 3H), 2.42 (s, 3H), 3.03 (s, 3H), 3.92 (qd, 1H, J=7.2, 10.8 Hz), 4.01 (q, 2H, J=7.2 Hz), 4.07 (qd, 1H, J=7.2, 10.8 Hz), 4.44 (s, 1H), 4.91 (s, 1H), 7.24-7.33 (m, 3H), 7.48-7.50 (m, 2H). ¹³C NMR (CDCl₃) δ 13.47, 13.52, 14.1, 21.2, 36.8, 61.0, 61.0, 66.4, 67.3, 75.2, 126.7, 127.2, 127.2, 140.2, 156.5, 168.4, 174.0. 6b-II. ¹H NMR (CDCl₃) δ 0.79 (t, 3H, J=7.2 Hz), 1.10 (t, 3H, J=7.2 Hz), 1.30 (s, 3H), 2.37 (s, 3H), 3.02 (s, 3H), 3.86-4.12 (m, 4H), 4.43 (s, 1H), 4.96 (s, 1H), 7.29-7.38 (m, 3H), 7.48-7.50 (m, 2H). The assignment of ¹³C NMR signals for this minor isomer from the mixture was not unequivocal. (1'S*,4R*,5S*)-4-Ethoxycarbonyl-5-[1'methylamino-1'-ethoxycarbonyl]methyl-5-(2'-furyl)-4-meth yl-2-methylthio-4,5-dihydrooxazole, 6c-I. According to the general procedure described above, from 5c-I (1.132 g, 2.55 mmol) a crude white solid (0.891 g, yield 90%) was obtained. The analysis of this crude product by TLC shown one spot which was characterized as the title compound by IR, ¹H and ¹³C NMR and purified by recrystallization. MP (CH₂Cl₂/n-hexane) 42-43°C. IR (KBr) 3500-3400, 1750, 1585 cm⁻¹. ¹H NMR (CDCl₃) δ 1.04 (t, 3H, J=7.2 Hz), 1.14 (t, 3H, J=7.2 Hz), 1.40 (s, 3H), 2.40 (s, 3H), 3.03 (s, 3H), 3.98 (qd, 1H, J=7.2, 10.8 Hz), 4.08 (q, 2H, J=7.2 Hz), 4.10 (qd, 1H, J=7.2, 10.8 Hz), 4.53 (s, 1H), 4.65 (s, 1H), 6.32 (dd, 1H, J=3.3, 1.2 Hz), 6.34 (dd, 1H, J=1.5, 3.3 Hz), 7.25 (dd, 1H, J=1.5, 1.2 Hz). ¹³C NMR (CDCl₃) δ 13.6, 13.7, 14.1, 20.2, 36.8, 61.2, 65.3, 66.7, 73.8, 75.3, 108.3, 110.3, 142.0, 153.3, 157.0, 167.7, 173.7. Analysis Calcd. for C₁₇H₂₄N₂O₆S: C, 53.11; H, 6.29; N,
7.29. Found: C, 53.07; H, 6.29; N, 7.32. Synthesis of Oxazolidines 7a-c. General Procedure The synthesis of oxazolines 7a-c were carried out from the oxazolidines 6a-c following the general procedure of N-methylation and reduction described above for the synthesis of oxazolidines 5a-c. (1'S*,4R*,5S*)-4-Ethoxycarbonyl-3,4,5-trimethyl-5-[1'-methylamino-1'-ethoxycarbonyl]methyl]oxa zolidine, 7a-I. According to the procedure described for the synthesis of 5a-c, from 6a-I (0.880 g, 2.66 mmol) a colorless oil was obtained (0.402 g, yield 50%). The analysis of the crude product by TLC (EtOAc/hexanes: 50/50) revealed one spot which was identified as a single racemic diastereomer of the title compound rac-24a. IR (film) 3500, 2800, 2700, 1740 cm⁻¹. ¹H NMR (CDCl₃) δ 1.18 (s, 3H), 1.25 (s, 3H), 1.30 (t, 3H, J=7.2 Hz), 1.31 (t, 3H, J=7.2 Hz), 2.21 (s, 3H), 2.24 (s, 3H), 2.94 (s, 1H), 2.95 (d, 1H, J=9.3 Hz), 3.53 (d, 1H, J=9.3 Hz), 4.18 (s, 1H), 4.24 (q, 2H, J=7.2 Hz), 4.19 (qd, 1H, J=7.2, 10.8 Hz), 4.27 (qd, 1H, J=7.2, 10.8 Hz). ¹³C NMR (CDCl₃) δ 8.0, 13.9, 14.0, 20.2, 37.2, 40.3, 60.8, 61.2, 70.4, 71.2, 71.5, 71.8, 169.4, 171.8. Analysis Calcd. for C₁₄H₂₆N₂O₅: C, 55.61; H, 8.67; N, 9.26. Found: C, 55.81; H, 8.69; N, 9.24. (1'S*,4R*,5S*)-4-Ethoxycarbonyl-3,4-dimethyl-5-[1'-methylamino-1'-ethoxycarbonyl]methyl]-5-ph enyloxazolidine, 7b-I, and (1'R*,4R*,5S*)-4-Ethoxycarbonyl-3,4-dimethyl-5-[1'-methylamino-1'-ethoxycarbonyl]methyl]-5-phenyloxazolidine, 7b-II .The synthesis was achieved from the epimeric mixture of 6b-I/6b-II (90:10) (1g, 2.65 mmol) following the procedure described above for the synthesis of 5a-c. The obtained crude product (0.740 g) showed a single spot by TLC (EtOAc/hexanes: 10/90) which was identified as a mixture of two epimeric racemates 7b-I/7b-II (90/10) by ¹H NMR analysis. The crude mixture of the title compounds was dissolved in dry CH₂Cl₂ and a stream of dry hydrogen chloride was bubbled trough the solution. The solid product (0.668 g) was identified as 7b-I. HCl and purified by recrystallization. MP (EtOAc/n-hexane) 60-61°C. Yield: 70%. Analysis Calcd. for C₁₉H₂₉ClN₂O₅: C, 56.92; H, 7.29; N, 6.99. Found: C, 57.13; H, 7.18; N, 6.73. **7b-I** (hydrochloride). IR (KBr) 3500, 1750, 1730 cm⁻¹. ¹H NMR (CDCl₃) δ 0.77 (t, 3H, J=7.2 Hz), 0.93 (t, 3H, J=7.2 Hz), 1.34 (s, 3H), 2.23 (s, 3H), 2.30 (s, 3H), 3.23 (d, 1H, J=9.45 Hz), 3.60 (d, 1H, J=9.45 Hz), 3.80 (qd, 1H, J=7.2, 11.1 Hz), 3.86 (qd, 1H, J=7.2, 11.1 Hz), 3.88 (s, 1H), 3.85 (qd, 1H, J=7.2, 10.8 Hz), 4.00 (qd, 1H, J=7.2, 10.8 Hz), 4.89 (bs, 2H), 7.27-7.31 (m, 3H), 7.48-7.52 (m, 2H). ¹³C NMR (CDCl₃) δ 8.3, 13.8, 13.9, 37.8, 40.7, 62.0, 62.4, 69.7, 72.1, 72.5, 77.5, 128.1, 128.8, 129.1, 139.3, 171.6, 172.7. The compound 7b-I was obtained by treatment of its hydrochloride with an aqueous saturated solution of NaHCO₃ and isolated by extraction with CHCl₃ and drying over MgSO₄ to give a colorless oil which was identified as 7b-I from its IR and ¹H and ¹³C NMR spectra. Isomer 7b-II was identified in the mother liquor together the major isomer 7b-I. 7b-I. IR (film) 3480, 2700, 1745 cm⁻¹. ¹H NMR (CDCl₃) δ 0.79 (t, 3H, J=7.2 Hz), 1.02 (t, 3H, J=7.2 Hz), 1.31 (s, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 3.16 (d, 1H, J=9.15 Hz), 3.62 (d, 1H, J=9.15 Hz), 3.64 (s, 1H), 3.82 (qd, 1H, J=7.2, 11.1 Hz), 3.89 (qd, 1H, J=7.2, 11.1 Hz), 3.90 (qd, 1H, J=7.2, 10.8 Hz), 4.06 (qd, 1H, J=7.2, 10.8 Hz), 4.94 (s, 1H), 7.24-7.29 (m, 3H), 7.44-7.51 (m, 2H). ¹³C NMR (CDCl₃) δ 8.1, 13.3, 13.6, 37.3, 40.4, 60.3, 60.7, 69.5, 71.1, 71.5, 75.6, 127.4, 128.4, 128.7, 137.8, 168.8, 170.4. **7b-II.** ¹H NMR (CDCl₃) δ (key signals) 1.32 (s, 3H), 2.29 (s, 3H), 2.32 (s, 3H), 3.13 (d, 1H, J=9.1). (1'S*,4R*,5S*)-4-Ethoxycarbonyl-5-(2'-furyl)-3,4-dimethyl-5-[1'-methylamino-1'-ethoxycarbonyl] methyloxazolidine, 7c-I.. The synthesis was achieved from the oxazoline 6c-I (0.550 g, 1.43 mmol) following the procedure described above for the synthesis of 5a-c. The obtained crude product (0.250 g) showed two spots by TLC (EtOAc/hexanes: 40/60). The separation by a flash chromatography allowed for the isolation of the two fractions of 0.070 g and 0.130 g, respectively. The first one was identified as a mixture of the initial oxazoline 6c-I (53%) and the single racemate 7c-I (7%). The second fraction was identified as the ethyl 2-(2-furoyl)-N,N-dimethylglycinate by its spectral data (yield: 40%). Ethyl 2-(2-furoyl)-N,N-dimethylglycinate. IR (film) 3130, 3110, 1730, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ 1.24 (t, 3H, J=7.2 Hz), 2.52 (s, 6H), 4.23 (q, 2H, J=7.2 Hz), 4.65 (s, 1H), 6.58 (dd, 1H, J=1.5, 3.3 Hz), 7.41 (dd, 1H, J=3.3, 0.6 Hz), 7.64 (dd, 1H, J=1.5, 0.6 Hz). ¹³C NMR (CDCl₃) δ 13.9, 42.3, 42.3, 60.9, 72.5, 112.3, 118.8, 146.8, 167.4, 182.1. 7c-I. ¹H NMR (CDCl₃) (in the mixture together 6c-I) δ 1.07 (t, 3H, J=7.2 Hz), 1.13 (t, 3H, J=7.2 Hz), 1.64 (s, 3H), 2.38 (s, 3H), 2.45 (s, 6H), 3.77 (q, 2H, J=7.2 Hz), 3.91 (s, 1H), 3.93 (qd, 1H, J=7.2, 10.8 Hz), 4.04 (qd, 1H, J=7.2, 10.8 Hz), 4.72 (d, 1H, J=1.2 Hz), 4.93 (d, 1H, J=1.2 Hz), 6.25 (dd, 1H, J=3.3, 1.2 Hz), 6.26 (dd, 1H, J=3.3, 1.2 Hz), 7.43 (dd, 1H, J=1.8, 1.2 Hz). NMR Analysis of Metallic Enolates from Ethyl Isocyanoacetate 1. In a reaction flask provided with a magnetic stirrer bar under argon, freshly cut metal (Li or Na) (0.442 mmol) was introduced. The tube was then sealed with a septum and degassed CD₃OD (0.5 mL) was added through a metal cannula. When the metal was completely dissolved, ethyl isocyanoacetate 1 (0.050 g, 0.442 mmol) was added to the solution, which developed a strong color. Then, the mixture was cannulated into a NMR tube under Ar provided with a septum. ¹H and ¹³C NMR spectra were registered at rt using TMS as internal reference. A single isomer was observed for all enolates. Lithium Enolate 1. ¹H NMR (CD₃OD) δ 1.17 (t, 3H, J=7.0), 3.60 (q, 2H, J=7.0), 5.33 (s, 1H). ¹³C NMR (CD₃OD) δ 18.1, 58.3, 160.5, 160.5, 166.7 Sodium Enolate 1. ¹H NMR (CD₃OD) δ 1.25 (t, 3H, J=7.0), 3.68 (q, 2H, J=7.0), 5.30 (s, 1H). ¹³C NMR (CD₃OD) δ 19.3, 59.1, 164.6, 166.7, 167.7. Acknowledgements. Financial support from the Dirección General de Enseñanza Superior, Ministerio de Educación y Cultura (Project PB90-0043 and PB93-0025) is gratefully acknowledged, as well as the NMR and Elemental Analysis Services of the UCM. E. M.-S. gratefully acknowledges the Ministry of Education and Science for a F. P. I. grant. #### **REFERENCES AND NOTES** - Lysobactin is a macrocyclic peptide lactone antibiotic isolated from Lisobacter Sp ATC C 53042; Tymiak, A. A.; McCormick, T. J.; Unger, S. E. J. Org. Chem. 1989, 54, 1149. - Lactacystin is a peptidic antibiotic which bears an unit of (2R,3S) 3-hydroxyleucine. a) Omura, S.; Fujimoto, T.; Otoguro, K.; Koriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113. b) Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya, T.; Fujita, S.; Nakagawa, A. J. Antibiot. 1991, 44, 117. c) Nagamitsu, T.; Sunazuka, T.; Omura, S.; Sprengeler, P. A.; Smith, III, A. B. J. Am. Chem. Soc. 1996, 118, 3584. - 3. Telomycin is a peptidic antibiotic containing (2S,3R)-3-hydroxyleucine: Sheehah, J. C.; Maeda, K.; Sen, A. K.; Stock, J. A. J. Am. Chem. Soc. 1962, 84, 1303. - 4. Aureobasidin A-E are a family of depsipeptides with potent antifungal activity, containing β-hydroxy-N-methyl-L-phenylalanine, β-hydroxy-N-methyl-L-valine and others modified amino acids: a) Ya-Bo, H.; Huang, Z.; Raynor, K.; Reisine, T.; Goodman, M. J. Am. Chem. Soc. 1993, 115, 8066, b) Takesako, K.; Ikai, K.; Haruna, F.; Endo, M.; Shimanaka, K.; Sono, E.; Nakamura, T.; Kato, Y. J. Antibiot. 1991, 44, 919. - a) Amino Acids, Peptides and Proteins; The Chemical Society, Cambridge 1968-1991, vol. 1.22. b) Hunt, S. Chemistry and Biochemistry of the Amino Acids; Barrett, G. C., Ed.; Chapman and Hall: London, 1985, p. 55. c) Jung, G.; Brückner, H.; Schmitt, H. in Structure and Activity of Natural Peptides, Voelter, W. and Weitzel de Gruyter, G., Eds.; Berlin, 1981, p. 75. - a) Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamade, H.; Takeuchi, T. J. Antibiot. 1970, 23, 2569. b) Rich, D. H. Proteinase Inhibitors; Barrett, A. J.; Salvenson, G., Eds.; Elsevier: New York, 1987, p. 179. - 7. Reetz, M. T. Angew. Chem., Int. Ed. Eng. 1991, 30, 1531. - 8. Hoppe and co-workers have described the first utilizations of N-[Bis(methylthio)methylene]glycine ester enolate as glycine nucleophile. The representative articles are as follows: a) Hoppe, D., Angew. Chem. Int. Ed. Engl. 1975, 14, 424. b) Hoppe, D.; Beckmann, L. Liebigs Ann. Chem. 1979, 2066. - 9. Williams, R. M. Synthesis of Optically Active α-Amino Acids, Pergamon Press, Oxford, 1989, pp. 34-61 and references cited therein. - The creation of an asymmetric quaternary centre is one of the most challenging problems in organic chemistry. See for example: a) ApSimon, J. W.; Colleir, T. L. Tetrahedron 1986, 42, 5157. (b) Martin, S. F. Tetrahedron 1990, 46, 419. c) Fuji, K. Chem. Rev. 1993, 93, 207. - 11. The syn-anti nomenclature has been used as proposed by Massamune for the relative arrangement of N-protected group and the OH in the zig-zag conformation of the diester. See: Masamune, S.; Ali, S. A.; Snitman, D. L.; Garvey, D. S. Angew. Chem. Int. Ed. Engl. 1980, 19, 557. - For a preliminary communication see: Alvarez-Ibarra, C.; Domínguez-Fernández, C.; Csáky, A. G.; Martínez-Santos, E.; Quiroga, M. L.; Gutiérrez, E. Tetrahedron Lett. 1993, 34, 5463. - Nógradi, M. Stereoselective Synthesis: VCH, Weinheim (FRG), 2nd ed., 1995, pp. 205-208 and references herein. - 14. LiO'Bu/'BuOH, LiOMe/MeOH, KO'Bu/'BuOH, KOMe/MeOH, KOEt/EtOH, NaOEt/EtOH, TIOEt/EtOH systems have been used as base/solvent systems. - 15. Together with the oxazolines 3-I and 3-II, ethyl N-[bis(methylthio)methylene]alaninate was also obtained via a retro-Claisen reaction of the alkoxide on the α -acyl alaninate. - 16. These transition states can be considered as a cyclic Cram-like reactive conformation. See: Cram, D. J.; Kopecky, K. R. J.
Am. Chem. Soc. 1959, 81, 2748. - 17. Only one configuration for the metal enolates of 1 was observed by ¹H NMR (300 MHz) (see Experimental Section) which can be assumed as the Z-isomer. See: a) House, H. O.; Trost, B. M. J. Org. Chem. 1965, 30, 1341. b) Hattori, K.; Yamamoto, H. Tetrahedron 1994, 50, 3099. c) van der Steen, F. H.; Boersma, J.; Spek, A. L.; van Koten, G. Organometallics 1991, 10, 2467 and references cited therein. - 18. This epimerization was readily observed by ¹H NMR analysis (CDCl₃, 300 MHz). - 19. Schöllkopf, U.; Gerhart, F.; Schröder, R.; Hoppe, D. Liebigs Ann. Chem. 1972, 116. - a) Meyers, A. I.; Shipman, M. J. Org. Chem. 1991, 56, 7099. b) Meyers, A. I., Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D. J. Am. Chem. Soc. 1988, 110, 4611. - 21. 1D NOE effects observed for compounds **3a** and **3b**. **3a-I**: 4.7% NOE between H-4 (s, 5.12 ppm) and CH₃-C1' (s, 1.59 ppm). **3a-II**: 1.0% NOE between H-4 (s, 5.19 ppm) and CH₃-C1' (s, 1.59 ppm).**3b-I**: 1.0% NOE between H-4 (s, 5.67 ppm) and CH₃-C1' (s, 1.28 ppm). **3b-II**: 0.6% NOE between H-4 (s, 5.66 ppm) and CH₃-C1' (s, 1.41 ppm). - 22. The MMX force field²⁴ is based upon MMP2²⁵ approximation which is modified by the addition of the π -VESCF²⁶ subroutine to MM2 force field²⁷ in order to study conjugated π -systems. Furthermore, the parametrization of some heteroatoms as the sulfur atom is also included. - 23. PC MODEL, Molecular Modelling for Personal Computers and Workstations, Serena Software, Bloomington (Indiana), version 4.0 (1992). - 24. Gajewski, J. J.; Gilbert, K. E.; McElvey, J. Adv. Molec. Modelling 1990, 2, 651. - 25. Clark, T., A Handbook of Computational Chemistry, Ed. John Wiley, New York, 1985, pp. 12-92. - 26. Quantum Chemistry Program Exchange n. 318, Indiana University, Bloomington (Indiana), 1977. - 27. a) Quantum Chemistry Program Exchange n. 395, Indiana University, Bloomington (Indiana), 1977. b) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127. - 28. a) Fletcher, R., Practical Methods for Optimization, Ed. John Wiley, New York, 1980. b) Gill, P. E.; Murray, W.; Wright, M. H., Practical Optimization, Ed. Academic Press, New York, 1981. - 29. The equations $G_{syn,anti}^0 G_{syn,syn}^0 = [(G_i^0)_{syn,anti} (G_i^0)_{syn,syn}] T \cdot (S_{M_{syn,syn}}^0 S_{M_{syn,syn}}^0)$ and $K_{eq} = e^{-[(G_{syn,syn}^0 G_{syn,syn}^0])/RT}$ have been used to calculate the equilibria constants. See: Eliel, E. E.; Wilen, S. S., Stereochemistry of Organic Compounds, Ed. John Wiley, New York, 1994, pp. 601, 653. - 30. Alvarez-Ibarra, C.; Quiroga, M. L.; Martínez-Santos, E.; Toledano, E. Org. Prep. Proced. Int. 1991, 23, 611. - 31. Alvarez-Ibarra, C.; Csákÿ, A. G.; Martínez-Santos, E.; Quiroga, M. L. Tetrahedron Lett. 1997, 53, 3679. - 32. Crystal data for 3c-I: C₁₈H₂₄N₂O₆S₂, monoclinic, a=10.538(6), b=11.356(3), c=18.213(7), α=90°, β=104.23(3), γ=90°, V=2113(1) Å³, Z=4, D_c=1.34 g.cm⁻³, F(000)=904, μ(M₀-Kα)=2.64 cm⁻¹. Diffraction data were measured on an diffractometer operating in the ω–2Θ mode with graphite-monochromated M₀-Kα radiation (λ=0.71069 Å) up to Θ=30° from a crystal of size 0.4x0.4x0.3 mm. 6128 Unique reflections were scanned and 2140 with I>2σ(I) were considered and used in the analysis. The intensities were corrected for Lorentz and polarization effects. The structure was solved by direct methods and Fourier synthesis using the Multan 80³³ and the X Ray 80³⁴ systems and refined by least squares. The R and R_w factors were of 0.078 and 0.074. - 33. Main, P.; Lessinger, L.; Woolfson, M. M.; Germain, G.; Declercq, J. P. MULTAN80, University of York, England and Louvain, Belgium, 1980. - 34. Stewart, J. M.; Kundell, F. A.; Baldwin, J. C. X-Ray 80 System, Computer Science Center, University of Maryland, College Park, 1985. - 35. Crystal data for **8b-I**: C₁₈H₂₂N₂O₅S₂; monoclinic, a=22.015(6), b=9.235(3), c=22.980(4), α=90°, β=154.38(4)°, γ=90°, V=2020(3) Å³, z=4, D_c=1.35 g.cm⁻³, F(000)=864, μ(M₀-Kα)=2.81 cm⁻¹. Diffraction data were measured on a diffractometer operating in the ω-2Θ mode with graphite-monochromated Mo-Kα radiation (λ=0.71069 Å) up to Θ=30° from a crystal of size 0.3x0.2x0.2. 3777 Unique reflections were scanned and 2545 with I>2σ(I) were considered and used in the analysis. For other experimental aspects see ref. 31.